First-Order Sensitivity of Linearly Constrained Strongly Monotone Composite Variational Inequalities∗
نویسندگان
چکیده
Extending the characterization of the directional derivatives of a strongly regular solution to a variational inequality under parameter perturbations, this paper derives a first-order sensitivity result for a monotone-plus affine variational inequality (AVI) having non-isolated solutions. The result employs a “directional AVI” whose solutions provide the directional derivatives, if they exist, of some invariant constants of the original AVI when its data are perturbed. Solvability of the directional AVI is characterized in terms of the direction of data perturbation. An application of this result to the support-vector machine quadratic program is discussed. An extension to a linearly constrained variational inequality defined by a strongly monotone composite mapping is also addressed.
منابع مشابه
A Relaxed Extra Gradient Approximation Method of Two Inverse-Strongly Monotone Mappings for a General System of Variational Inequalities, Fixed Point and Equilibrium Problems
متن کامل
Solutions of variational inequalities on fixed points of nonexpansive mappings
n this paper , we propose a generalized iterative method forfinding a common element of the set of fixed points of a singlenonexpannsive mapping and the set of solutions of two variationalinequalities with inverse strongly monotone mappings and strictlypseudo-contractive of Browder-Petryshyn type mapping. Our resultsimprove and extend the results announced by many others.
متن کاملApproximating fixed points of nonexpansive mappings and solving systems of variational inequalities
A new approximation method for the set of common fixed points of nonexpansive mappings and the set of solutions of systems of variational inequalities is introduced and studied. Moreover, we apply our main result to obtain strong convergence theorem to a common fixed point of a nonexpannsive mapping and solutions of a system of variational inequalities of an inverse strongly mono...
متن کاملGeneralized Projection Method for Non-lipschitz Multivalued Monotone Variational Inequalities
We generalize the projection method for solving strongly monotone multivalued variational inequalities when the cost operator is not necessarily Lipschitz. At each iteration at most one projection onto the constrained set is needed. When the convex constrained set is not polyhedral, we embed the proposed method in a polyhedral outer approximation procedure. This allows us to obtain the projecti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008